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Relativistic Time Scales: TCB and TCG 

•  t = TCB  Barycentric Coordinate Time = coordinate time of the BCRS 

• T = TCG  Geocentric Coordinate Time = coordinate time of the GCRS 

These are part of 4-dimensional coordinate systems so that  

the TCB-TCG transformations are 4-dimensional: 

• Therefore:    

• Only if space-time position is fixed in the BCRS 

  TCG becomes a function of TCB: 
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Relativistic Time Scales: TCB and TCG 

• Important special case                     gives the TCG-TCB relation  

  at the geocenter: 
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linear drift removed: 
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Relativistic Time Scales: proper time scales 

•  proper time of each observer: what an ideal clock moving  

 with the observer measures… 

• Proper time can be related to either TCB or TCG (or both) provided 

  that the trajectory of the observer is given: 

  The formulas are provided by the relativity theory: 

x
obs

i (t) and/or X
obs

a (T )

d

dt
= g

00
t,x

obs
(t)( )

2

c
g

0i
t,x

obs
(t)( ) x

obs

i (t)
1

c2
g

ij
t,x

obs
(t)( ) x

obs

i (t) x
obs

j (t)

1/ 2

d

dT
= G

00
T ,X

obs
(T )( )

2

c
G

0a
T ,X

obs
(T )( ) X

obs

a (T )
1

c
2
G

ab
T ,X

obs
(T )( ) X

obs

a (T ) X
obs

b (T )

1/ 2



6 

Relativistic Time Scales: proper time scales 

• Specially interesting case: an observer close to the Earth surface: 
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is the height above the geoid 

is the velocity relative to the rotating geoid 

• Idea: let us define a time scale linearly related to T=TCG, but which 

  is numerically close to the proper time of an observer on the geoid: 
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Relativistic Time Scales: TT 

h is the height above the geoid 

i
is the velocity relative to the rotating geoid 

• Idea: let us define a time scale linearly related to T=TCG, but which 

  is numerically close to the proper time of an observer on the geoid: 

  
TT = (1 L

G
) TCG, L

G
6.969290134 10-10
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can be neglected 

in many cases 

• To avoid errors and changes in TT implied by changes/improvements 

  in the geoid, the IAU (2000) has made LG to be a defined constant: 
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• TAI is a practical realization of TT (up to a constant shift of 32.184 s) 

• Older name TDT (introduced by IAU 1976): fully equivalent to TT 
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Relativistic Time Scales: TDB-1 

• Idea: to scale TCB in such a way that the “scaled TCB” remains close to TT 

• IAU 1976: TDB is a time scale for the use for dynamical modelling of the 

  Solar system motion which differs from TT only by periodic terms. 

• This definition taken literally is flawed:  

  such a TDB cannot be a linear function of TCB! 

  But the relativistic dynamical model (EIH equations) used by e.g. JPL 

  is valid only with TCB and linear functions of TCB… 
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Relativistic Time Scales: Teph 

• Since the original TDB definition has been recognized to be flawed 

  Myles Standish (1998) introduced one more time scale Teph differing 

  from TCB only by a constant offset and a constant rate: 

  
T
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• The coefficients are different for different ephemerides. 

• The user has NO information on those coefficients from the ephemeris. 

• The coefficients could only be restored by some additional numerical 

   procedure (Fukushima’s “Time ephemeris”) 

• Teph is de facto defined by a fixed relation to TT:  

             by the Fairhead-Bretagnon formula based on VSOP-87 



10 

Relativistic Time Scales: TDB-2 

The IAU Working Group on Nomenclature in Fundamental Astronomy
 suggested to re-define TDB to be a fixed linear function of TCB: 

•    TDB to be defined through a conventional relationship with TCB: 

• T0 = 2443144.5003725 exactly, 

• JDTCB = T0 for the event 1977 Jan 1.0 TAI at the geocenter and 

  increases by 1.0 for each 86400s of TCB, 

• LB  1.550519768 10 8, 

• TDB0  6.55 10 5 s. 
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Linear drifts between time scales 

Pair Drift per year  

(seconds) 

Difference at J2007 

(seconds) 

TT-TCG 0.021993 0.65979 

TDB-TCB 0.489307 14.67921 

TCB-TCG 0.467313 14.01939 
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Scaled BCRS: not only time is scaled 

• If one uses scaled version TCB – Teph or TDB – one effectively uses  
  three scaling: 

• time 

• spatial coordinates 

• masses (μ= GM) of each body 

 WHY THREE SCALINGS? 
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• These three scalings  
   together leave  
   the dynamical equations  
   unchanged: 

• for the motion of  
  the solar system bodies: 

(first published in 1917!) 

• for light propagation: 

Scaled BCRS 
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• These three scalings lead to the following: 

 semi-major axes 

 period 

 mean motion 

 the 3rd Kepler’s law 

Scaled BCRS 
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Scaled GCRS 

• If one uses TT being a scaled version TCG one effectively uses  
  three scaling: 

• time 

• spatial coordinates 

• masses (μ= GM) of each body 

• International Terrestrial Reference Frame (ITRF) uses such scaled GCRS
 coordinates and quantities   
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Quantities: 

 numerical values and units of measurements 

 
A = A{ }

XX

A
XX

• Arbitrary quantity           can be expressed by a numerical value 

  in some given units of measurements                   : 

A{ }
XX

 
A

XX

• XX denote a name of unit or of a system of units, like SI 

• Notations taken from ISO 31-0 

   “Quantities and units – Part 0: General principles”, 1992 
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Quantities: 

 numerical values and units of measurements 

B = F A, F = const

• Consider two quantities A and B, and a relation between them: 

• No units are involved in this formula! 

• The formula                                     should be used on both sides before 

  numerical values can be discussed. 

• In particular, 
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XX
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• For the scaled BCRS this gives: 

Scaled BCRS 

• Numerical values are scaled in the same way as quantities if and only if 
  the same units of measurements are used. 
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• SI units 

• time 

• length 

• mass 

• Official definitions from the SI document, published by BIPM: 

Units of measurements: SI 

  

t
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• System of astronomical units 

• time 

• length 

• mass 

• Day is by definition  86400 SI seconds 

• The mass of the Sun expressed in astronomical units of mass is by 

  definition 1 

  Any possible variability of the solar mass is ignored! 

Astronomical units in the Newtonian framework 
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• Astronomical units vs SI ones: 

• time 

• length 

• mass 

• AU is the unit of length with which the gravitational constant G takes  

  the value (IAU 1938, VIth General Assembly in Stockholm) 

• AU is the semi-major axis of the [hypothetic] orbit of a massless particle 

  which has exactly a period of 

  in the framework of unperturbed Newtonian Keplerian motion around the Sun 

Astronomical units in the Newtonian framework 
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• Geometrized units are defined implicitly by setting three fundamental 
  constant to unity: 

• Gravitational constant 

• speed of light 

• Planck constant 

• Why possible? 

Astronomical units vs. geometrized units 
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• Both system of units – geometrized and astronomical - can be used 

   without any relation to the “directly measurable” SI units 

• The relations to the SI units of length, time and mass can only be obtained 

  from experimental data. 

Astronomical units vs. geometrized units 
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• Values in SI and astronomical units: 

• distance (e.g. semi-major axis) 

• time (e.g. period) 

• GM 

• Mass parameter of a body in SI can be directly expressed as 

Astronomical units in the Newtonian framework 
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Be ready for a mess! 

Astronomical units in the relativistic framework 



26 

Astronomical units in the relativistic framework 

• Let us interpret all formulas above as TCB-compatible astronomical units 

• Now let us define a different TDB-compatible astronomical units 

• Four constants define the system of units: 
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Astronomical units in the relativistic framework 

• Considering that  

• the only constraint on the constants reads 
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Astronomical units in the relativistic framework 

• Possibility I: Standish, 1995 

• This leads to 
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Astronomical units in the relativistic framework 

• Possibility II: Brumberg & Simon, 2004; Standish, 2005 

• This leads to 
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• From the DE405 header one gets: 

 TDB-compatible AU: 

• Using that (also can be found in the DE405 header!) 

  one gets the TDB-compatible GM of the Sun expressed in SI units 

• The TCB-compatible GM reads  
  (this value can be found in IERS Conventions 2003) 

How to extract planetary masses from the DEs 
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Scaled GCRS 

• Again three scalings  (“**” denote quantities defined in the scaled GCRS; 
   these TT-compatible quantities): 

• time 

• spatial coordinates 

• masses (μ=GM) of each body 

• the scaling is fixed 

• Note that the masses are the same in non-scaled BCRS and GCRS… 

• Example: GM of the Earth from SLR (Ries et al.,1992; Ries, 2005) 

• TT-compatible 

• TCG-compatible 
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• GM of the Earth from SLR: 

• TT-compatible 

• TCG/B-compatible 

• TDB-compatible 

• GM of the Earth from DE: 

• DE403 

• DE405 

TCG/TCB-, TT- and TDB-compatible 

 planetary masses 
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• The reason to introduce astronomical units was that the angular 

  measurements were many orders of magnitude more accurate than 

  distance measurements. 

• Arguments against astronomical units 

• The situation has changed crucially since that time! 

• Solar mass is time-dependent just below current accuracy of 

  ephemerides 

• Complicated situations with astronomical units in relativistic 
   framework 

• Why not to define AU conventionally as fixed number of meters? 

• Do you see any good reasons for astronomical units in their current form?    

     NO! 

Do we need astronomical units? 
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